Test Review Algebraic Modelling Solutions
Ia) $\quad$ tshirts $\left(\begin{array}{llll}20 & 60 & 40 & 20 \\ \text { s.pants } \\ 15 & 50 & 20 & 5\end{array}\right)=A$
$t$-shirts spants
b) $\$(15 \quad 20)=B$
c) $B \times A=\left(\begin{array}{ll}15 & 20\end{array}\right)\left(\begin{array}{lllr}20 & 60 & 40 & 20 \\ 15 & 50 & 20 & 5\end{array}\right)$

$$
\begin{aligned}
& =\left(\begin{array}{ccccc}
15(20)+20(15) & 15(60)+20(50) & 15(40)+20(20) & 15(20)+20(5)) \\
5 & M & L & \text { XL }
\end{array}\right. \\
& =\$\left(\begin{array}{cccc}
600 & 1900 & 1000 & 400
\end{array}\right)
\end{aligned}
$$

Total: $\$ 3900$
$2 a) \quad \operatorname{Sept}\left(\begin{array}{ccccc}m & c c & w b & 5 & k c \\ 80 & 50 & 30 & 25 & 125\end{array}\right)=A$
b) $\operatorname{Oct}\left(\begin{array}{lllll}m & c c & w b & s & k c \\ 35 & 20 & 14 & 0 & 10\end{array}\right)=B$
c) $A-B=\#\left(\begin{array}{ccccc}m & c c & w b & s & k c \\ 45 & 30 & 16 & 25 & 115\end{array}\right)$

3a) $\begin{gathered} \\ \operatorname{Oct}\left(\left.\begin{array}{cccc}c & m & s & c i d e r \\ & \operatorname{Dec}\left(\begin{array}{ccc}885 & 580 & 350 \\ 950 & 425 & 550 \\ 900 \\ 900\end{array}\right)=A\end{array} \right\rvert\,=A\right.\end{gathered}$
b) $0.8 A=0\left(\begin{array}{cccc}c & m & s & \text { cider } \\ 708 & 464 & 280 & 480 \\ 760 & 340 & 440 & 560\end{array}\right)=B$
\#3
(d) $0.8 \mathrm{~A} \times \mathrm{C}$ or $B \times C=\left(\begin{array}{llll}708 & 464 & 280 & 480 \\ 760 & 340 & 440 & 560\end{array}\right)\left(\begin{array}{l}0.25 \\ 0.50 \\ 0.30 \\ 1.00\end{array}\right)$

$$
=\binom{789(0,25)+464(0,5)+280(0,3)+488(1)}{7600,2,5)+340(0,5)+440(0,3)+560(1)}=\binom{973}{1052}
$$

Total: $\$ 2025$

H4 (4) Rent: $y=20 x+20$
(B) $D 14: y=23.5 x+8$

$$
20 x+20=23.5 x+8
$$

(C) $\operatorname{RentAll}: y=23 x+11$

Rental
Cost ${ }^{\text {月 }}$

$$
\begin{aligned}
\frac{A \& B}{20 x+} & =23.5 \\
12 & =3.5 x \\
x & \approx 3.4
\end{aligned}
$$

$B \& C$

$$
\begin{aligned}
23.5 x+8 & =23 x+11 \\
0.5 x & =3 \\
x & =6
\end{aligned}
$$

A 40

$$
\begin{gathered}
20 x+20=23 x+11 \\
9=3 x \\
3=x
\end{gathered}
$$

If renting for less than 3.4 dap use DIY. If renting for move Then $3.4^{\circ}$ dap use uRent. Do not use Rent Ale.
4. (4) $y=30 x+10$ $y=$ total cost
(B) $y=25 x+15$ $x=\#$ days.
(C)

$$
y=20 x+30
$$

$$
\begin{aligned}
& \frac{A \& B}{30 x+10}=25 x+15 \\
& 5 x=5 \\
& x=1
\end{aligned}
$$

$$
25 x+15=20 x+30
$$

$$
30 x+10=20 x+30
$$

$$
5 x=15
$$

$$
10 x=20
$$

$$
x=3
$$

$$
x=2
$$



If you cur complete the job in one day (or less) use $A$.
If you need the sander between $1 \frac{1}{\&} 3$ damp (dup) use B. If you need the sander more than 3 damp, use $C$.

5a)

$$
\begin{align*}
& 2 x+y-z=-3 \\
& 5 x+3 y-2 z=-5 \\
& 3 x-y+z=-2 \tag{3}
\end{align*}
$$

(1) $2 x+y-z=-3$
(2) $5 x+3 y-2 z=-5$
(2) $3 x-y+z=-2$
(x2) (3) $6 x-2 y+2 z=-4$
$5 x=-5$

$$
11 x+y=-9
$$

$x=-1$ (4)
b)

$$
\begin{aligned}
& x+2 y=6 \Rightarrow x=6-2 y \\
& \frac{2}{5} x-4 y=0 \\
& \therefore \frac{2}{5}(6-2 y)-4 y=0 \quad[\text { mult by } 5 \text { ] } \\
& 2(6-2 y)-4(5) y=0(5) \\
& 12-4 y-20 y=0 \\
& 12-24 y=0 \\
& 12=24 y \\
& 12=y
\end{aligned} \quad \therefore \begin{aligned}
& x=6-2\left(\frac{1}{2}\right) \\
& =6-1
\end{aligned}
$$

6) 

$$
\begin{align*}
& \text { (2) } 200 c+100 u+600 L=62.00 \\
& (x-2)(4)-300 c-100 u-1500 L=-89.00 \\
& -100 c-900 L=-27.00 \tag{5}
\end{align*}
$$

(3)

$$
\begin{gathered}
250(0.18)+150 u+800(0.01)=83.00 \\
45+150 u+8=83 \\
150 u+53=83 \\
150 u=30 \\
u=0.20
\end{gathered}
$$

Local Calling: $1 \$ / \mathrm{mun}$
Withen Canada: $18 \% / \mathrm{min}$
Jo MAQ: $20 \% / \mathrm{min}$
(5)

$$
\begin{aligned}
11 x+y & =-9 \\
11(-1)+y & =-9 \\
-11+y & =-9 \\
y & =2
\end{aligned}
$$

(1)

$$
\begin{gathered}
2 x+y-z=-3 \\
2(-1)+(2)-z=-3 \\
-2+2-z=-3 \\
-z=-3 \\
z=3
\end{gathered}
$$

OR This could be salved using matures.
(1) $75 c+80 u+1200 c=41.50$
(2) $200 c+100 u+600 u=62.00$
(3) $250 c+150 u+800 L=83.00$

$$
\left[\begin{array}{llll}
75 & 80 & 120 & 0 \\
200 & 100 & 60 & 0 \\
250 & 150 & 80 & 0
\end{array}\right]\left[\begin{array}{l}
c \\
u \\
L
\end{array}\right]=\left[\begin{array}{l}
41.50 \\
62.00 \\
83.00
\end{array}\right]
$$

Long Distance Canada $\rightarrow$ \$0.18/min Long Dis tancer USA $\rightarrow \$ 0.20 / \mathrm{min}$ Local Culls $\longrightarrow \$ 0.01 / \mathrm{min}$
[ $\mathrm{FA}^{-1}$ [B]
[ $[: 18]$


Fa) $h, \$$

$$
\begin{aligned}
& (2,100) \\
& (5,130)
\end{aligned} \quad m=\frac{\Delta y}{\Delta x}=\frac{130-100}{5-2}=\frac{30}{3}=10
$$

$$
\begin{aligned}
\therefore \quad y & =10 x+B \\
(2,100): & 100 \\
100 & =10(2)+B \\
& =20+B \\
80 & =B
\end{aligned} \quad\left\{\begin{array}{r}
\text { equation: } \\
y=10 x
\end{array}\right.
$$

c) $x=8$ :

$$
\begin{aligned}
& y=10(8)+80 \\
& y=\$ 160
\end{aligned}
$$

$\therefore$ a sign installed 8 m above the ground would $\cos 1$ \$160.
d) $y=154$ :

$$
\begin{gathered}
154=10 x+80 \\
74=10 x \\
7.4=x
\end{gathered}
$$

$\therefore$ The signs is 7.4 m high if it cost \$154 to install

8A) Demand $\begin{aligned} & (p, 1000) \quad m=\frac{900-1000}{(80,900)} \\ & 80-70\end{aligned} \frac{-100}{10}=-10$

$$
\left.\begin{array}{c}
(70,1000) \quad y=-10 x+B \\
1000=-10(70)+B \\
1700=B
\end{array}\right\} \begin{aligned}
& \text { b) Supoly: }(70,300) \quad m=\frac{\text { Demand Equation }}{y=-10 x+1700} \\
& (80,450)
\end{aligned}
$$

$$
\begin{aligned}
(70,300): y & =15 x+B \\
300 & =15(70)+B \\
300 & =1050+B \\
-750 & =B
\end{aligned}
$$

$$
\text { b) } \begin{aligned}
-10 x+1700 & =15 x-750 \\
2450 & =25 x \\
98 & =x
\end{aligned}
$$

$$
y=-10(98)+1700=720=y
$$

c) Supply: $y=15(95)-750=675$ Demand: $y=-10(95)+1700=750$ $\therefore$ Shortfall of 75
d) $\operatorname{Supply}=0$

$$
\begin{aligned}
& 0=15 x-750 \\
& 750=15 x \\
& x=50
\end{aligned}
$$

the supply would be eliminated when the price to $\$ 50.00$
e) $x=0 \quad$ Demand: $\begin{aligned} y & =-10(0)+1700 \\ y & =1700\end{aligned}$

$$
y=1700
$$

The consumer demand would be for 1700 trees.


The $y$-int is the fixed cost (or flat rate) of renting the wood splitter. That is, the cost of the unsunancer.
The $x$-int means if the cost was $\$ 0$, you could rent the splitter for minus $\frac{1}{4}$ dap. Of course, this makes no sense, so the $x$ - int has no meaning in this sutiration.
10.

$$
\begin{gathered}
3 z+2 y+x=6 \\
\frac{x-\ln t}{3(0)+2(0)+x=6} \\
x=6 \\
(6,0,0) \\
y-\ln t \\
3(0)+2 y+(0)=6 \\
2 y=6 \\
y=3 \\
(0,3,0)
\end{gathered}
$$

$z-i n t$


10a) $C=0.2 L+0.05 R+10$
b) L-intercept $(C=0, R=0)$
$L \rightarrow$ \# of long distance min.
$R \rightarrow \#$ of local prime time min
$C \rightarrow$ cost of plan
$R$-intercept $(C=0, L=0)$

$$
\begin{aligned}
& 0=0.2(0)+0.05 R+10 \\
& 0=0.05 R=10 \\
& -0.05 R=10 \\
& R=-200
\end{aligned}
$$

$C$-intercept ( $L=0, R=0$ )

$$
\begin{aligned}
& c=0.2(0)+0.05(0)+10 \\
& c=10
\end{aligned}
$$

11) $\left(\begin{array}{rrr}2 & 1 & 4 \\ 3 & -1 & 6 \\ 5 & 3 & -2\end{array}\right) \cdot\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}9 \\ 11 \\ 17\end{array}\right)$
12) $y=a x^{2}+b x+c$

$$
\begin{aligned}
& (10,130): 130=100 a+10 b+c \\
& (16,175): 175=256 a+16 b+c \\
& (22,58): 58=484 a+22 b+c
\end{aligned} \quad\left(\begin{array}{ccc}
100 & 10 & 1 \\
256 & 16 & 1 \\
484 & 22 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
\therefore y=-2.25 x^{2}+66 x-305
\end{array} \quad \therefore A^{-1} c=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-2.25 \\
66 \\
-305
\end{array}\right)\right.
$$

If she charges $\$ 20 \quad\left\{\begin{array}{l}y=-2.25(20)^{2}+66(20)-305 \\ \text { she will be able to }\end{array}\right.$
She will be able to $\left\{\begin{array}{l}y=115\end{array}\right.$
sell 115 t-shurts.
13)


$$
\begin{aligned}
y & =a x^{2}+b x+c \\
14.6 & =a+b+c \\
17.9 & =4 a+2 b+c \\
11.4 & =9 a+3 b+c \\
& \therefore y=-4.9 x^{2}+18 x+1.5
\end{aligned}
$$

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 1 & 1 \\
4 & 2 & 1 \\
9 & 3 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
14.6 \\
17.9 \\
11.4
\end{array}\right) \\
A^{-1} C=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-4.9 \\
18 \\
1.5
\end{array}\right)
\end{gathered}
$$

after 3.5 seconds
the stunt man $\left\{\begin{aligned} y & =-4.9(3.5)^{2}+18(3.5)+1.5 \\ & =4.475\end{aligned}\right.$ is 4.475 m above the ground.

